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Overview

e Markov chains

Metropolis-Hastings

Markov chain Monte Carlo

Assignment 2 to be released today.
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Sequential data

So far, we only considered methods in which the samples we generate
are i.i.d:

o We generated T samples z1.7 = {x1,...,27}.

@ But each sample was independent from each other

xy ~p(r) iid.

o This lecture, we will generate samples that are dependent.
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Sequential data

This also comes up when modelling the data: We generally assume
data was i.i.d, however this may be a poor assumption:

e Sequential data is common in time-series modelling (e.g. stock
prices, speech, video analysis) or ordered (e.g. textual data, gene
sequences).

@ Recall the general joint factorization via the chain rule

p(x17) Hp xt|Ti—1,...,21) where p(xi|zo) = p(z1).

e But this quickly becomes intractable for high-dimensional data
-each factor requires exponentially many parameters to specify as
a function of T.

@ So we make the simplifying assumption that our data can be
modeled as a first-order Markov chain

p(fﬁt\xlzt—l) = P($t|$t—1)
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Markov chains
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e We make the simplifying first-order Markov chain assumption:

p(ﬂvt\ﬂ?l:t—l) = P($t|=’tt—1)

e This assumption greatly simplifies the factors in the joint
distribution

T

p(z1r) = Hp($t|$t—1)

t=1
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Markov chains
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o A useful distinction to make at this point is between stationary
and non-stationary distributions that generate our data

» Stationary Markov chain: the distribution generating the data
does not change through time:
p(rip1 =yl = 2) = p(Ti42 = Y|Tey1 = )

» Non-stationary Markov chain: the distribution generating the
data is a function of time: The transition probabilities
p(xi41 = ylzy = x) depend on the time ¢.

We only consider stationary Markov chains, (aka homogenous MCs).
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Higher-order Markov chains

x Z2 T3

X To T3 Ty

In some cases, the first-order assumption may be restrictive (such as
when modeling natural language, where long-term dependencies occur
often). We can generalize to high-order dependence trivially

@ Second order:

p(wt\ﬂﬁht—l) = p($t|96t—1, xt—2)

e m-th-order

P(l’t|$1:t—1) = p(xt‘xt—lzt—m)
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Transition matrix

e When z; is discrete (e.g. z; € {1, ..., K} which is called state
space), the conditional distribution p(z¢|z;—1) can be written as a
K x K matrix.

We call this the transition matrix A: A;; = p(xy = jloi—1 = 1), the
probability of going from state i to state j.

@ Notice

p(ry =j) = Zp(xt = jloe—1 = i)p(xe-1 = 1),

= Z Az-jp(xt_l = Z)

e Each row of the matrix sums to one, > y Aj; = 1, so this is called a
stochastic matrix.
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Transition matrix

o The transition matrix A: A;; = p(x¢ = jlog—1 = 1) is the
probability of going from state ¢ to state j.

» We can visualize Markov chains via a directed

te a 1-8 graph, where nodes represent states and
arrows represent legal transitions, i.e.,
non-zero elements of A.
A » This is known as a state transition diagram.

o The weights associated with the arcs are the probabilities.

e For example, the trainsition matrix for the 2-state chain shown
above is given by

B 1—«a «
A‘[ 8 1—5]
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Chapman-Kolmogorov equations

e The n-step transition matrix A(n) is defined as
Aij(n) = p(@r4n = jloe = 1)

which is the probability of getting from ¢ to j in exactly n steps.
e Notice that A(1) = A.

e Chapman-Kolmogorov equations state that
Ajj(m+n) ZAzk m)Agj(n) equivalently A(m+n)= A(m)A(n)

the probability of getting from ¢ to j in m + n steps is just the
probability of getting from ¢ to k& in m steps, and then from k to j
in n steps, summed up over all k.

@ SoA(n) =AxAn—1)=AxAxAn—-2)=---= A",
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Application: Markov Language Models

@ We could use Markov chains as language models, which are
distributions over sequences of words.

@ State space is all words and x; denotes the ¢-th word in a sentence.

o We use a first-order Markov model, then p(z; = k|xy—1 = j).
» We estimate the transition matrix A. The
probability of any particular sentence of length T'

p(z1.7]0) =n(21)A(21, 22) - - - A1, 27)
T K K

=(x
K
H I A

t=2 j=1 k=1

where 7(z1) is the probability of the sentence
starting with word x;.
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Application: Markov Language Models

e We use MLE to estimate A from data D = {z(1), ..., (N}
e Likelihood of any particular sentence x1.7 of length T
K T K K

plarrl0) =[[ =" T T T] Al

j=1 t=2j=1 k=1

)

o Log-likelihood of a sentence z(?) = (asgi), ey &

logp(D|0) = Zlogp ) = Z:Nj1 log m; + ZZNjk log Aj;
J Jj k

where we define the counts

N N Ti—1
N} Zzl[xil = jl, Njkzz Uzip = j, w41 = k.
i=1 =1 =1
The MLE is gi = ek Ay =
o e 1S given as T = Zj le Zk
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Stationary distribution of a Markov chain

e We are often interested in the long term distribution over states,
which is known as the stationary distribution of the chain.

o Let A be the transition matrix, e.g. p(z441 = jloy = 1) = A;; and
m(j) = p(xy = j) be the probability of being in state j at time t.
Thus the initial distribution is given by my and

mi(j) =Y _ mo(i)Ai;.
i
e Assume that m; is a row vector with entries m;(j). This vector is
the distribution of x4, e.g. p(x; = j) = m(j).

m = myA or more generally m = moAL.

@ Do this infinitely many steps, the distribution of x; may converge
T =mA.

then we have reached the stationary distribution (aka the invariant
distribution) of the Markov chain.
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Stationary distribution

@ We can find the stationary distribution of a Markov chain by
solving the eigenvector equation

ATv=v andset 7=0o".

v is the eigenvector of AT with eigenvalue 1.

@ Need to normalize!
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Detailed balance equations

@ A MC is called irreducible if we can get from any state to any
other state.

@ A MC is called regular if the transition matrix satisfies Al >0
for some n and all 4, j.

e A MC is time reversible if there exists a distribution 7 such that
7riAij = WjAji
This is called the detailed balance equations.

Detailed balance means —z—x’ and — 1z’ —x are equally probable:
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Detailed balance equations

Theorem

If a Markov chain with transition matrix A is regular and satisfies
detailed balance wrt distribution 7, then 7 is a stationary distribution.

Proof:

Zﬂ-iAij = Zﬂ-jAji :WjZAji =T; — T =T7A.
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Metropolis-Hastings

Importance and rejection sampling work only if the proposal density
q(x) is similar to p(z). In high dimensions, it is hard to find one such q.

71Q(x; 2tY) @ The Metropolis—Hastings algorithm
P instead makes use of a proposal
density ¢ which depends on the
current state z(®),

o The density ¢(z’|z®) might be a
sy * simple distribution such as a
Gaussian centered on the current
z®_ but can be any density from
which we can draw samples.

o In contrast to importance and
rejection sampling, it is not
necessary ¢(z'|z®)) to look at all
similar to p(z).

Prob Learning (UofT) STA414-Week 5-1/2 17 /20



MCMC

o In contrast to rejection sampling,
where the accepted points {z(*)} are
independent, MCMC methods
generate a dependent sequence.

e Each sample z(® has a probability
distribution that depends on the
previous value, z(t—1).

o MCMC methods need to be run for
a time in order to generate samples
that are from the target
distribution p.

We can still do Monte Carlo estimaton for large enough T to estimate

the mean of a test function ¢:
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Metropolis-Hastings algorithm

As before, we assume we can evaluate p(x) for any x. The procedure is
as follows:

e A tentative new state x’ is generated from the proposal density
q(z’ |sc(t)). To decide whether to accept the new state, we compute

_ p(@)q(eW]2’)
Ha®)g(a®)

» If a > 1 then the new state is accepted.
» Otherwise, the new state is accepted with probability a.
» If accepted, set z(*t1) = 2/, Otherwise, set z(*t1) = z(*),

e This is a Markov chain with stationary distribution 7(z) is chosen
to be the target distribution p(z).

@ The derivation of the algorithm starts with the condition of
detailed balance.
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Summary

@ To sample from a distribution, we can design a Markov chain with
its invariance distribution as the target (aka MCMC).

e Metropolis-Hastings (MH) method can sample from
high-dimensional targets.
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